The bigdata® RDF database Chapter XX Linked Data Management

Abstract
Bigdata® is a standards-based, high-performance, scalable, open-source graph database. Written entirely in Java, the platform supports the SPARQL 1.1 family of specifications, including Query, Update, Basic Federated Query, and Service Description. Bigdata supports novel extensions for durable named solution sets, efficient storage and querying of reified statement models, and scalable graph analytics. The database supports multi-tenancy and can be deployed as an embedded database, a standalone server, a highly available replication cluster, and as a horizontally-sharded federation of services similar to Google's bigtable, Apache Accumulo, or Cassandra. The bigdata open source platform has been under continuous development since 2006. It is available under a dual licensing model (GPLv2 and commercial licensing) and a number of well-known companies OEM, resell, or embed bigdata in their applications. SYSTAP, LLC leads the development of the open-source project and offers support subscriptions for both commercial and open-source users. Our goal is a robust, scalable, high-performance, and innovative platform. In this chapter, we will present the scale-up and scale-out architectures of the bigdata database, index management, and query processing and special concerns for memory management under Java.
Bigdata Database Architecture

In fields as diverse as pharmacology, finance, fraud detection, and intelligence analysis, better analysis and decision making can be facilitated by taking into consideration large amounts of heterogeneous data from many sources in many formats, and degrees of structure, and update rates. Pouring this data together often yields new insights and interesting cross-connections not readily apparent when considering the various data sets in isolation. Such “mash-ups” can provide the basis for operational decision making in complex and dynamic domains, support new forms of online collaboration, and help manage risks in complex markets.

In order to address this problem, we require three things. First, we must be able to load and query very large data sets that exceed the reasonable processing capabilities of even high-end server platforms. Second, those data sets are heterogeneous and interesting data often appears after the system has been deployed, so we must be able to dynamically align the schema for those data sets and to continuously integrate new data. Third, we require the ability to maintain data provenance and drill down into the source detail.

The relational model benefits tremendously from its structure, but lacks the flexibility to rapidly and declaratively integrate new schema into existing systems – relational data integration efforts are often measured in months, not minutes. Expressive Semantic Web technologies such as RDF and OWL have helped reshape this problem, but RDF database technology has not been able to keep up with scale demands. Until very recently, RDF databases and OWL reasoners have not tried to tackle the issues associated with large dynamic data sets, and were insufficiently scalable to attack real world problems where data size can be on the order of billions or even trillions of triples. Without the ability to reach scale, potential Semantic Web adopters turn to cloud computing technologies such as map/reduce, not fully understanding the tradeoffs between the two technologies and, in particular, the limitations of map/reduce processing for handling graph structured or linked data.
Bigdata®[^1][^2] is a horizontally-scaled, general purpose storage and computing fabric for ordered data (B+Trees), designed to operate on a cluster of commodity hardware. While many clustered databases rely on a fixed, and often capacity limited, hash-partitioning architecture, bigdata uses dynamically partitioned key-range shards. This architecture was chosen to remove any realistic scaling limits – in principle, bigdata may be deployed on 10s, 100s, or even thousands of machines. Further, and unlike hash-partitioned approaches, new capacity may be added incrementally to data centers without requiring the full reload of all data. On top of that core is the bigdata RDF Store, a massively scalable RDF database supporting RDFS and OWL Lite reasoning, high-level query (SPARQL), and datum level provenance.

Deployment models

Bigdata supports several distinct deployment models:
- Embedded Database (Journal)
- Servlet Engine (Journal in WAR)
- Replication Cluster (HA Journal)
- Horizontally scaled, parallel database (Federation) aka scale-out.

These deployment models are based on two distinct architectures. The embedded database, WAR, and the replication cluster are *scale-up* architectures based on the Journal. The Journal provides basic support for index management against a single backing store. The Federation is a *scale-out* architecture using dynamically partitioned indices to distribute the data within each index across the resources of a compute cluster.

The benefits of the scale-out architecture are significant. Using the scale-out architecture, a cluster can scale to petabytes of data and has much greater throughput than a single machine. However, scale-out has higher latency for selective queries due to the increased overhead of internode communication. Also, while updates on the Journal and replication cluster are ACID, updates on the federation are *shard-wise* ACID. Finally, while it is always important to vector operations against indices, but vectored operations are absolutely required for good performance on the scale-out architecture.

The choice of the right deployment model depends on your requirements. The Journal offers low latency operations due to its *locality* and scales to ~50B triples or quads on a single machine and offers a low total cost of ownership. The replication cluster retains the architecture of the Journal, but adds high availability and horizontal scaling of query (but not data) without sacrificing the write performance of the database. The federation has higher latency due to the overhead of inter-node coordination and offers greater throughput for some query workloads. The federation can scale-out far beyond the Journal, but due to higher coordination costs, you need at least 3 machines to have performance similar to a single machine Journal. Since you can have the low-latency of the Journal combined with high availability and horizontally scaled query on a 3-node cluster.

[^1]: http://www.bigdata.com/blog
[^2]: http://www.sourceforge.net/projects/bigdata

Bryan Thompson

Page 3 of 34. 2/28/2013
replication cluster, the scale-out architecture of the federation really only makes sense for very large data sets and clusters of 8 or more machines.

All deployment models support the SAIL, SPARQL 1.1 Query, SPARQL Update, etc.

Concurrency Control

Bigdata supports optional transactions based on MVCC. Many database architectures are based on two phase locking (2PL), which is a pessimistic concurrency control strategy. In 2PL, a transaction acquires locks as it executes and readers and writers will block in their access conflicts with the locks for running transactions. MVCC is an optimistic concurrency control strategy and relies on the use of timestamps to detect conflicts when a transaction is validated. MVCC allows very high concurrency since readers never block and writers can run concurrently even when they touch the same region of the disk (there is no sense of a row, page or table lock). If two writers modify the same tuple in an index, then that conflict is detected when the transaction validates and the second transaction will fail unless the conflict can be resolved (in fact, bigdata can resolve many write-write conflicts for RDF). The MVCC design and the ability to choose whether or not operations will be isolatable by transactions is driven deep into the architecture, including the copy-on-write mechanisms of the B+Tree, the Journal and backing store architectures, and the history retention policy.

Transaction processing on a federation is optional by design. Transactions can greatly simplify application architecture, but they can limit both performance and scale through increased coordination costs. For example, Google® developed their “row store” \(^3\) to address a set of very specific application requirements. In particular, they had a requirement for extremely high concurrent read writes and very high concurrent write rates. Distributed transaction processing was ruled out because each commit must be coordinated with the transaction service, which limits the potential throughput of a distributed database. In their design, Google opted to restrict concurrency control to ACID\(^4\) operations on “rows” within a “column family.” With this design, a purely local locking scheme may be used and substantially higher concurrency may be obtained. Bigdata uses this approach for its “row store”, for the lexicon for an RDF database, and for high throughput distributed bulk data load.

For a federation, distributed transactions\(^5\) are primarily used to support snapshot isolation for query. An “isolatable” index (one which supports transactional isolation) maintains per-tuple revision timestamps, which are used to detect and, when possible, reconcile write-write conflicts. The transaction service is responsible for assigning transaction identifiers, which are timestamps, revision timestamps, and commit timestamps. The

\(^5\) Bigdata® supports both read-only and read-write transactions in its single server mode and HA replication cluster, and distributed read-only transactions on a federation. Distributed read-only transactions are used for query and when computing the closure over an RDF database. Support for distributed read-write transactions on a federation has been contemplated, but never implemented.
transaction service maintains a record of the open transactions and manages read-locks on the historical states of the database. The read-lock is just the timestamp of the earliest running transaction, but it plays an important role in managing resources as discussed below.

Managing database history

Bigdata is an *immortal database* architecture with a configurable *history retention policy*. An immortal database is one in which you can request a consistent view of the database at any point in its history, essentially winding back the clock to the state of the database at some prior day, month or year. This feature can be used in many interesting ways, including regulatory compliance, examining changes in the state of accounts over time, etc.

For many applications, access to unlimited history is not required. Therefore you can configure the amount of history that will be retained by the database. This is done by specifying the minimum age before a commit point may be released, e.g., 5 minutes, 1 day, 2 weeks, or 12 months. The minimum release age can also be set to zero, in which case bigdata will release the resources associated with historical commit points as soon as the read locks for those resources have been released. Equally, the minimum age can be set to a very large number, in which case historical commit points will never be released.

The minimum release age determines which historical states you can access, not the age of the oldest record in the database. For example, if you have a 5 day history retention policy, and you insert a tuple into an index, then that tuple would remain in the index until 5 days after it was overwritten or deleted. If you never update that tuple, the original value will never be released. If you do delete the tuple, then you will still be able to read from historical database states containing that tuple for the next 5 days. Applications can apply additional logic if they want to delete records once they reach a certain age. This can be done efficiently in terms of the tuple revision timestamps.

B+Trees

The B+Tree is a central data structure for database systems because it provides search, insert, update in logarithmic amortized time. The bigdata B+Tree fully implements the tree balancing operations and remains balanced under inserts and deletes. The mutable B+Tree implementation is single threaded under mutation, but allows concurrent readers. In general, readers do not use the mutable view of a B+Tree, so readers do not block for writers. For scale-out, each B+Tree key-range partition is a view comprised of a mutable B+Tree instance with zero or more read-optimized, read-only B+Tree files known as index segments. The index segment files support fast double-linked navigation between leaves – they are used to support the dynamic sharding process on a federation. bigdata uses a constant (and configurable) branching factor and allows the page size of the index to vary. This works out well with overall copy-on-write architecture and simplifies some decisions in the maintenance of the index.
In bigdata, an index maps unsigned byte[] keys to byte[] values\(^6\). Mechanisms are provided which support the encoding of single and multi-field numeric, ASCII, and Unicode data. Likewise, extensible mechanisms provide for (de)serialization of application data as byte[]s for values. An index entry is known as a “tuple”. In addition to the key and value, a tuple contains a “deleted” flag which is used to prevent reads through to historical data in index views, discussed below, and a revision timestamp, which supports optional transaction processing based on Multi-Version Concurrency Control (MVCC)\(^7\). The IndexMetadata object is used to configure both local and scale-out indices. Some of its most important attributes are the index name, index UUID, branching factor, objects that know how to serialize application keys and both serialize and deserialize application values store in the index, and the key and value coder objects.

The B+Tree never overwrites records (nodes or leaves) on the disk. Instead, it uses copy-on-write for clean records, expands them into Java objects for fast mutation and places them onto a hard reference ring buffer for that B+Tree instance. On eviction from the ring buffer, and during checkpoint operations, records are coded into their binary format and written on the backing store.

Records can be directly accessed in their coded form. The default key coding technique is front coding, which supports fast binary search with good compression. Canonical Huffman\(^8\)\(^9\) coding is supported for values. Custom coders may be defined, and can be significantly faster for specific applications.

\(^6\) We are reviewing this design decision with respect to column-wise storage.
The high-level API for the B+Tree includes methods that operate on a single key-value pair (insert, lookup, contains, remove), methods which operate on key ranges (rangeCount, rangeliterator), and a set of methods to submit Java procedures that are mapped against the index and execute locally on the appropriate data services (see below). Scale-out applications make extensive use of the key-range methods, mapped index procedures, and asynchronous write buffers to ensure high performance with distributed data.

The rangeCount\textit{(fromKey,toKey)} method is of particular relevance for query planning. The B+Tree nodes internally track the #of tuples spanned by a separator key. Using this information, the B+Tree can report the cardinality of a key-range on an index using only two key probes against the index. This range count will be exact unless delete markers are being used, in which case it will be an upper bound (the range count includes the tuples with delete markers). Fast range counts are also available on a federation, where a key-range may span multiple index partitions.

Scale-Up Architecture

The Journal manages a backing store, provides low-level mechanisms for writing and reading allocations on that file, and has higher-level mechanisms for registering and operating on indices. There are several different backing store models for the Journal. The most important are described below.

WORM

The WORM is a Write Once Read Many store. It is an \textit{indelible} append-only file structure, with root blocks that are updated at each commit point. The WORM is primarily used to buffer writes in the scale-out architecture before they are migrated onto read-optimized, read-only B+Tree files.

RWStore

The RWStore provides a read/write model based on managed allocation slots on the backing file and can address up to 16TB of data. The vast majority of the allocations are the nodes and leaves of the indices. As noted above, index updates use a \textit{copy-on-write} model. The old version of the index page is deleted, but it will remain visible until (a) no open transaction is reading on a commit point in which that index page is visible; and (b) the history retention period has expired for commit points in which the page is visible. These criteria are summarized and tracked as the earliest release time. Commit points \textit{before} that release time may be released and their allocations recycled. The recycler does not use a vacuum process. Instead, the addresses of the deleted pages are written onto delete blocks. When the commit point is released, the delete blocks are read and the associated pages are bit flagged as free in the allocators.

MemStore

The MemStore provides a similar capability for managed allocations, but the data are stored in the C heap (rather than the Java managed object heap). This avoids problems associated with garbage collection overhead for high object creation / retention rates. The MemStore is 100% Java. It relies on NIO buffers to create allocations outside of the
Java managed object heap. The MemStore is used internally in combination with the HTree10 data structure for analytic query operations requiring highly scalable hash indices.

High Availability

High availability is based on a quorum model and the low-level replication of write cache blocks across a pipeline of services. A highly available service exposes an RMI interface using Apache River and establishes watchers (that reflect) and actors (that influence) the distributed quorum state in Apache zookeeper. Sockets are used for efficient transfer of write cache blocks along the write pipeline. The services publish themselves through zookeeper. Services register with the quorum for a given *logical* service. A majority of services must form a consensus around the last commit point on the database. One of those services is elected as the *leader* and the others are elected as *followers* (collectively, these are referred to as the *joined* services – the services that are joined with the met quorum). Once a quorum meets, the leader services write requests while reads may be served by the leader or any of the followers.

Write replication occurs at the level of 1MB cache blocks. Each cache blocks typically contain many records, as well as indicating records that have been released. Writes are coalesced in the cache on the leader, leading to a very significant reduction in disk and network IO. Followers receive and relay write cache blocks and also lay them down on the local backing store. In addition, both the leaders and the followers write the cache blocks onto a HALog file. The write pipeline is flushed before each commit to ensure that all services are synchronized at each commit point. A 2-phase commit protocol is used. If a majority of the joined services votes for a commit, then the root blocks are applied. Otherwise the write set is discarded. This provides an ACID guarantee for the highly available replication cluster.

HALog files play an important role in the HA architecture. Each HALog file contains the entire write set for a commit point, together with the opening and closing of root blocks for that commit point. HALog files provide the basis for both incremental backup, online resynchronization of services after a temporary disconnect, and online disaster recovery of a service from the other services in a quorum. HALog files are retained until the later of (a) their capture by an online backup mechanism, and (b) a fully met quorum.

10 A Robust Scheme for Multilevel Extendible Hashing by Sven Helmer, Thomas Neumann, Guido Moerkotte. ISCIS 2003: 220-227
Online **resynchronization** is achieved by replaying the HALog files from the leader for the missing commit points. The service will go through a local commit point for each HALog file it replays. Once it catches up it will join the already met quorum. If any HALog files are unavailable or corrupt, then an online **rebuild** replicates the leader’s committed state and then enters the resynchronization protocol. These processes are automatic.

Online backup uses the same mechanisms. Incremental backups request any new HALog files, and write them into a locally accessible directory. Full backups request a copy of the leader’s backing store. The replication cluster remains online during backups. Restore is an offline process. The desired full backup and any subsequent HALog files are copied into the data directory of the service. When the service starts, it will apply all HALog files for commit points more recent than the last commit point on the Journal. Once the HALog files have been replayed, the service will seek a consensus (if no quorum is met) or attempt to resynchronize and join an already met quorum.

Scale-Out Architecture

Bigdata is a general-purpose, horizontally scaled architecture for persistent, ordered data. The overall approach utilizes key-range partitioned B+Tree\(^{11}\) indices distributed across the resources of a cluster. This choice was influenced by previous work on distributed database architectures, including Google’s bigtable\(^{12}\) project.

Services Architecture

The bigdata federation is a services architecture. The **Data Services** correspond to the concept of a tablet server in Google’s bigtable or Apache Accumulo. Each Data Service has responsibility for some number of index partitions. However, unlike those platforms, the Data Service can support distributed query processing as well as servicing read and write requests. This makes it possible to co-locate JOIN processing with the data on which a JOIN must read. The **Metadata Service** is also referred to as the **shard locator service** – it maintains a B+Tree over the key-range partitions for each scale-out index, mapping each key-range partition onto a partition metadata record required to locate the index partition. Clients requiring a key-range scan of an index will obtain a **locator scan** for that key-range. The locator scan visits the partition metadata records. The client then issues separate requests to the data service for each index partition. A transaction service coordinates read locks to support snapshot isolation across the cluster and tracks the earliest commit point that must be retained by the data services in order to satisfy the open transactions and the configured history retention period for the database. Client services provide a container for executing distributed tasks. Jini (now the Apache river project) is used for service registry and discovery. Global synchronous locks and

configuration management are realized using Apache zookeeper. Support for SPARQL processing is achieved by integration with the Sesame 2 platform\(^\text{13}\).

![Diagram of a bigdata federation services architecture.](Image)

Figure 2 The services architecture for a bigdata federation.

Service Discovery

Bigdata services advertise themselves in a jini service registrar and are discovered by lookups against that registrar. Clients await discovery of the transaction service and the metadata service, and then register or lookup indices using the metadata service. The metadata service maps key ranges for each scale-out index onto logical data services. When a client issues a request against a scale-out index, the bigdata library transparently resolves the locator(s) for that query. Clients obtain proxies for the data services using jini, then talk directly to the data services. This process is illustrated in **Error! Reference source not found.** and is completely transparent to bigdata applications. The client library automatically handles redirects when an index partition is moved, split or joins and data service failover.

\(^{13}\) Support for additional RDF platforms, including Jena, is being considered.
Figure 3: Service discovery.

Left: Clients and services advertise themselves with the service registrar (a). Clients discover the shard locator (b).

Right: Clients discover the locations of index shards (a), discover the data services hosting those shards (b), and then talk directly to those data services (c).

Dynamic Partitioning

Bigdata indices are dynamically broken down into key-range shards, called index partitions, in a manner that is completely transparent to clients. Each index partition is a collection of local resources that contain all tuples for some key-range of a scale-out index and is assigned a unique identifier (a 32-bit integer).

There are three basic operations on an index partition: split, which divides an index partition into two (or more) index partitions covering the same key-range; move, which moves an index partition from one data service to another, typically on a different machine in the cluster; and join, which joins two index partitions that are siblings, creating a single index partition covering the same key-range. These operations are invoked transparently and asynchronously.

The data in the indices is strictly conserved by these operations, only the index partition identifier, the index partition boundaries (split, join), or the index partition location (move) are changed. The index partition identifier is linked to a specific key-range and a specific location. Since these operations change either the key-range and/or the location,
they always assign a new index partition identifier. Requests for old index partitions are easily recognized as having index partition identifiers that have been retired and result in stale locator exceptions. The client-side views of the scale-out indices automatically trap stale locator exceptions and redirect and reissue requests as necessary.

Metadata Service

Index partition locators are maintained in a metadata index that lives on a specialized data service known as the metadata service. An index partition locator maps a key-range for an index onto an index partition identifier and the data service hosting that index partition. The key for the tuples in the metadata index is simply the first key that could enter the corresponding index partition. Depending on the data scale, there may be thousands of index partitions per scale-out index.

Data Services

Each data service maintains an append-only write buffer (a WORM mode Journal) and an arbitrary number of read-only, read-optimized index segments. Each index partition is, in fact, a view onto (a) the mutable B+Tree on the live journal; and (b) historical data on a combination of old journals and index segments. The nominal capacity of the Data Service journal is ~200M. Likewise, the target size for the index segments in a compact index partition view is ~200M. There may be 100s or 1000s of index partitions per data service. Thus index segment files form the vast majority of the persistent state managed by a data service.

Index Segments

Index segments have been briefly discussed above. Each index segment is the result of a batch build operation and has data for some key range of an index as of some commit point on the database. The index segment is optimized for read performance. The nodes of the B+Tree are laid out in key order on the disk and are typically read in a single IO when the index segment is opened. The leaves are also laid out in key-order on the disk and are linked to both their predecessors and followers in key order. A single IO is required to read a leaf from the disk, and sequential scans can be performed efficient in either direction.

Bloom filters

A bloom filter is an in memory data structure that can very rapidly determine whether a key IS NOT in an index. When the bloom filter reports "no", you are done and you do not touch the index. When the bloom filter reports "yes", you have to read the index to verify that there really is a hit. Bloom filters are a stochastic data structure, require about 1 byte per index entry, and must be provisioned up front for an expected number of index entries. So if you expect 10M triples that is a 10MB data structure. Since bloom filters do not scale-up, they are automatically disabled once the number of index entries in the mutable B+Tree exceeds about 2M tuples.

Bloom filters may be configured for scale-out indices. Each time an index partition build or merge operation generates a new index segment file, the data on the mutable B+Tree is migrated into read-optimized index segments. Every time we overflow a journal, we
wind up with a new (empty) B+Tree to absorb writes, so the bloom filter on the journal is automatically re-enabled. Further, during build and merge operations we have perfect knowledge of the number of tuples in an index segment and generate an exact fit bloom filter. This can provide a dramatic boost when a distributed query includes joins that wind up doing a large number of point lookups to verify that a fully bound triple pattern exists in the data.

Overflow Processing

Periodically writes on a data service cause the journal to reach its nominal size on the disk – this is known as an “overflow.” When this occurs, a new journal is created, and an asynchronous process begins which migrates buffered writes from the old journal onto new index segments. Asynchronous overflow processing defines two additional operations on index partitions: build, which copies only the buffered writes for the index partitions from the old journal onto a new index segment; and compacting merge, which copies all tuples in the index partition view into a new index segment. Index partition builds make it possible to quickly retire the old journal, but they add a requirement to maintain delete markers on tuples in order to prevent historical tuples from re-entering the index partition view. Index partition merges are more expensive, but they produce a compact view of the tuples in which duplicates have been eradicated. The decision to build vs. merge is made locally based on the complexity of the index partition view and the relative requirements of different index views for a data service. The asynchronous overflow tasks are arranged in a priority queue. Separate thread pools are used to limit the number of concurrent build tasks and concurrent merge tasks. The decision to split an index partition into two index partitions or to join two index partitions into a single index partition is made after a merge when there is a good estimate of the space requirements on disk for the index partition. The decision to move an index partition is based on load. A merge is always performed before a move to produce a compact view that is then sent across a socket to the receiving service.\(^\text{14}\)

\(^{14}\) A similar design was described in “Bigtable: A Distributed Storage System for Structured Data”, http://labs.google.com/papers/bigtable.html.
Figure 5: Diagram illustrating how the view of a shard evolves over time. The index segment files represent data from the previous journal. A new journal is opened each time the current journal fills up.

When a scale-out index is registered, the following actions are taken: First, a metadata index is created for that scale-out index on the metadata service. This will be used to locate the index partitions for that scale-out index. Second, a single index partition is created an arbitrary data service. Third, a locator is inserted into the metadata index mapping the key-range ([],∞) onto that index partition. Clients resolve the metadata service, and probe it to obtain the locator(s) for the desired scale-out index. The locator contains the data service identifier as well as the key-range ([],∞) for the index partition. Clients then resolve the data service identifier to the data service and begin writing on the index partition on that data service.

Figure 6 Initial conditions place a single index partition on an arbitrary host. That index partition contains all data for the scale-out index.

15 All keys are translated into unsigned byte[]. An empty byte[] is the first possible key in any bigdata index. The symbol ∞ is used to indicate an arbitrarily long unsigned byte[] containing 0xFF in all positions and corresponds to the greatest possible key in any bigdata index and is indicated internally by a null reference.
Eventually, writes on the initial index partition will cause its size on disk to exceed a configured threshold (~200M) and the index partition will be split. The split(s) are identified by examining the tuples in the index partition and choosing one or more separator key(s). Each separator key specifies the first key which may enter a given index partition. The separator keys for the locators of a scale-out index always span the key range ([],∞) without overlap. Thus each key always falls into precisely one index partition.

If necessary, applications may place additional constraints on the choice of the separator key. For example, this may be done to ensure that an index partition never splits a logical row. That guarantee may be used to achieve extremely high concurrent write rates using shard-wise ACID operations since concurrency control may be conducted locally on the data service.

Scatter Split

The potential throughput of an index increases as it is split and distributed across the machines in the cluster. In order to rapidly distribute an index across the cluster and thereby increase the resources that can be brought to bear on that index, a scatter split is performed early in the life cycle of the first index partition for each scale-out index.

Unlike a normal split, which replaces one index partition with two index partitions, the scatter split replaces the initial index partition with N * M index partitions, where N is the number of data services and M is a small integer.
The new index partitions are redistributed across the cluster, leaving every N^{th} index partition on the original data service. After the scatter-split operation, the throughput of the index may be dramatically increased.

RDF Database Architecture

In this section we define the Resource Description Framework (RDF), and show how an RDF database is realized using the bigdata architecture. Bigdata implements the Storage And Inference Layer (SAIL) API, which provides a pluggable backend for the Sesame platform\(^{16}\). However, the query evaluation and transaction models for bigdata differ significantly from those of openrdf.

Resource Description Framework

The Resource Description Framework\(^{17,18}\) (RDF) may be understood as a general-purpose, schema-flexible model for describing metadata and graph-shaped information. RDF represents information in the form of statements (triples or quads). Each triple connotes an edge between two nodes in a graph. The quad position can be used to give statements identity (our provenance mechanism is based on this approach) or to place statements within a named graph. RDF provides some basic concepts used to model information - statements are composed of a subject (a URI or a Blank Node), a predicate (always a URI), an object (a URI, Blank Node, or Literal value), and a context (a URI or a Blank Node). URIs are used to identify a particular resource\(^{19}\), whereas Literal values describe constants such as character strings and may carry either a language code or data

\(^{16}\) Openrdf, http://www.openrdf.org

\(^{17}\) Resource Description Framework, http://www.w3.org/RDF/

\(^{18}\) RDF Semantics, http://www.w3.org/TR/rdf-mt/

\(^{19}\) The benefit of URIs over traditional identifiers is two fold. First, by using URIs, RDF may be to describe addressable information resources on the Web. Second, URIs may be assigned within namespaces corresponding to Internet domain, which provides a decentralized mechanism for coining identifiers.
type attribute in addition to their value. RDF also provides an XML-based syntax (called RDF/XML\footnote{http://www.w3.org/TR/rdf-syntax-grammar/}) for interchanging RDF graphs.

There is also a model theoretic layer above the RDF model and RDF/XML interchange syntax that is useful for describing ontologies and for inference. RDF Schema\footnote{http://www.w3.org/TR/rdf-schema/} and the OWL Ontology Web Language\footnote{http://www.w3.org/2004/OWL/} (OWL) are two such standards-based layers on top of RDF. RDF Schema is useful for describing class and property hierarchies. OWL is a more expressive model. Specific OWL constructs may be applied to federation and semantic alignment, such as owl:equivalentClass and owl:equivalentProperty (for aligning schemas) and owl:sameAs (for dynamically snapping instance data together).

There is an inherent tension between expressivity and scale, since high expressivity is computationally expensive and only gets more so as data size increases. Bigdata has focused on scale over expressivity.

Database Schema for the RDF

Bigdata supports three distinct RDF database modes: triples, triples with provenance\footnote{We are in the process of reconciling our statement level provenance mode with efficient support for RDF reification. When this process is finished, we will support efficient statements about statement in both the triples and quads modes of the database.}, and quads. These modes reflect slight variations on a common database schema. Abstractly, this schema can be conceptualized as a *Lexicon* and a *Statement* relation, each of which uses several indices. The ensemble of these indices is collectively an RDF database *instance*. Each RDF database is identified by its own namespace. Any number of RDF database instances may be managed within a bigdata instance.

Lexicon

A wide variety of approaches have been used to manage the variable length attribute values, arbitrary cardinality of attribute values, and the lack of static typing associated with RDF data. Bigdata uses a combination of inline representations for numeric and fixed length RDF Literals with dictionary encoding of URIs and other Literals. The inline representation is typically one byte larger than the corresponding primitive data type and imposes the natural sort order for the corresponding data type. Inline representations for xsd:decimal and xsd:integer are use a variable length encoding. URIs declared in a vocabulary when the KB instance was created are also inlined (in 2-3 bytes). Depending on the configuration, blank nodes are typically inlined. As discussed elsewhere, statements about statements are inlined as the representation of the statement they describe.

The encoded forms of the RDF Values are known as *Internal Values* (IVs). IVs are variable length identifiers that capture various distinctions that are relevant to both RDF data and how the database encodes RDF Values. Each IV includes a *flags* byte that indicates the kind of RDF Value (URI, Literal, or Blank node), the natural data type of
the RDF Value (Unicode, xsd:byte, xsd:short, xsd:int, xsd:long, xsd:float, xsd:double, xsd:integer, etc.), whether the RDF Value is entirely captured by an inline representation, and whether this is an extension data type. User defined data types can be created using an extension byte that optionally follows the flags byte. Inlining is used to reduce the stride in the statement indices and to minimize the need to materialize RDF Values out of the dictionary indices when evaluating SPARQL FILTERs.

The lexicon is comprised of three indices:
- BLOBS - Large literals and URIs are stored in a BLOBS index. The key is formed from a flags byte, an extension byte, the int32 hash code of the Literal, and an int16 collision counter. The value associated with each key is the Unicode representation of the RDF Value. The use of this index helps to keep very large literals out of the TERM2ID index where they can introduce severe skew into the B+Tree page size. The hash code component of the BLOBS index introduces significant random IO during load operations. Therefore, the use of the BLOBS index is limited to literals whose string length is over a threshold (256). This is only a small percentage of the Literals in the data sets that we have examined.
- TERM2ID – The key is the Unicode collation key for the Literal or URI. The value is the assigned int64 unique identifier.
- ID2TERM – The key is the identifier (from the TERM2ID index). The value is the RDF Value.

Writes on the lexicon indices use an eventually consistent approach. This allows lexicon writes to be made without global locking in a federation. An optional full text index maps tokens extracted from RDF Values onto the internal identifiers for those RDF values and may be used to perform keyword search against the triple or quad store.

Statement Indices

The **Statement** relation models the Subject, Predicate, Object and, optionally, the Context, for each statement. The RDF database uses covering indices as first described in YARS. For each possible combination of variables and constants in a basic triple pattern (or quad pattern), there is a clustered index that has good locality for that access pattern. For a triple store, this requires 3 statement indices (SPO, POS, and OSP). For a quad store, this requires 6 statement indices (OCSP, SPOC, CSPO, PCSO, POCS, and SPOC). In each case the name of the index indicates the manner in which the Subject, Predicate, Object, and the optional Context have been ordered to form the keys for the index.

SPARQL Query Processing

It is important to keep in mind the architectural differences between the scale-up architecture (including the Journal, the WAR, and the HA replication cluster) and the scale-out architecture (the federation). Index scans on the scale-up architecture turn into random IOs since the index is not in key order on the disk. However, index scans on the scale-out architecture turn into sequential IOs as the vast majority of all data

in a cluster is on read-only index segment files in key order on the disk. This architectural difference means that a cluster is able to more efficiently handle query plans that do sustained index scans. However, since index scans turn into random IO on the scale-up architecture, you should use either lots of spindles or SSD to reduce the IO Wait for the disk.

In addition to the inherent resources and opportunities for increased parallelism, the federation has two other architectural benefits. First, the scale-out architecture can use a bloom filter in front of each index segment. This means that point tests can be much faster on a cluster than on a single machine since correct rejections will never touch the disk. Second, all B+Tree nodes in an index segment are in one contiguous region on the disk. When the index segment is opened, the nodes are read in using a single sustained IO. Thereafter, a read to a leaf on an index segment will perform at most one IO.

RDF query is based on statement patterns. A triple pattern has the general form (S,P,O), where S, P, and O are either variables or constants in the Subject, Predicate, and Object position respectively. For the quad store, this is generalized as patterns having the form (S,P,O,C), where C is the context (or graph) position and may be either a blank node or a URI.

Bigdata translates SPARQL into an Abstract Syntax Tree (AST) that is fairly close to the SPARQL syntax and then applies a series of rewrite optimizers on that AST. Those optimizers handle a wide range of problems, including substituting constants into the query plan, generating the WHERE clause and projection for a DESCRIBE or CONSTRUCT query, static analysis of variables, flattening of groups, elimination of expressions or groups which are known to evaluate to a constant, ensuring that query plans are consistent with the bottom-up evaluation semantics of SPARQL, reordering joins, attaching FILTERS in the most advantageous locations, etc. The rewrites are based on either fully decidable criteria or heuristics rather than searching the space of possible plans. The use of heuristics makes it possible to answer queries having 50-100 JOINS with very low latency – as long as the joins make the query selective in the data. Joins are re-ordered based on a static analysis of the query, the propagation of variable bindings, fast cardinality estimates for the triple patterns, and an analysis of the propagation of in-scope variables between sub-groups and sub-SELECTs.

Once the AST has been rewritten, it is translated into a physical query plan. Each group graph pattern surviving from the original SPARQL query will be modeled by a sequence of physical operators. Nested groups are evaluated using solution set hash joins. Visibility of variables within groups and sub-queries adhere to the rules for variable scope for SPARQL (e.g., as if bottom up evaluation were being performed). For a given group, there is generally a sequence of required joins corresponding to the statement patterns in the original query. There may also be optional joins, sub-SELECT joins, joins of pre-computed named

Figure 9: Query execution.

A runtime join ordering algorithm based on chain sampling has been implemented, but is not yet integrated into the SPARQL query engine.
solution sets, etc. Constraints (FILTERs) are evaluated as soon as the variables involved in the constraint are known to be bound and no later than the end of the group. Many SPARQL FILTERs can operate directly on IVs. When a FILTER requires access to the materialized RDF Value, the query plan includes additional operators that ensure that RDF Value objects are materialized before they are used.

The query plan is submitted to the vectored query engine for execution. The query engine supports both scale-up and scale-out evaluation. For scale-out, operators carry additional annotations which indicate whether they must run at the query controller (where the query was submitted for execution), whether they must be mapped against the index partition on which the access path will read (for joins) 26, and whether they can run on any data service in the federation. For scale-out, an operator in added at the end of the query plan to ensure that solutions are copied back to the query controller where they are accessible to the client. For all other operators, the intermediate solutions are placed onto a work queue for the target operator. The query engine manages the per-operator work queues, schedules the execution of operators, and manages the movement of data on a federation.

![Diagram](image)

Figure 10: Illustration of pipelined join execution in scale-out.

The query engine supports concurrency at several levels:

- Concurrent execution queries. A thread pool in the SPARQL end point controls the number of queries that may execute concurrently.
- Concurrent execution of different operators within the same query. Parallelism here is not limited to avoid the potential for deadlock. Parallelism at this level also helps to ensure that the work queue for each operator remains full and serves to minimize the latency for the query.
- Concurrent execution of the same operator within the same query on different chunks of data. An annotation is used to restrict parallelism at this level.

Solutions are vectored into each operator. Some operators are “at-once” and will buffer all intermediate solutions before execution. For example, when evaluating a complex optional, we will fully buffer the intermediate solutions on a hash index before running the sub-group. Other operators are “blocked” – they will buffer large blocks of data on the native heap in order to operate on as much data as possible each time the execute – for example, a hash join against an access path scan. However, many operators are “pipelined” – they will execute for each chunk of intermediate solutions.

26 Support for parallel hash joins is planned.
Bigdata favors pipelined operator execution whenever possible. SPARQL queries involving a sequence of triple patterns are translated using nested index joins and have very low latency to the first solution. Each access path is constrained as solutions flow through the query engine. The constrained access paths are probed using the bindings for each intermediate solution. This turns into a highly localized reads on the B+Tree index for that access path. Pipelined execution is also supported for DISTINCT and for simple OPTIONALs (an OPTIONAL containing a single triple pattern and no filters that require materialization of variable bindings against the lexicon).

Query plans involving GROUP BY, ORDER BY, complex OPTIONALs, EXISTS, NOT EXISTS, MINUS, SERVICE, or sub-SELECT have stages that cannot produce any outputs until all solutions have been computed up to that point in the query plan. Such queries can still have low latency as long as the data volume is low. If you want to aggregate or order a subset of the data, then you can move part of the query into a sub-SELECT with a LIMIT but leave the aggregation or order by clause in the parent query. The sub-SELECT will be pipelined and evaluation will halt as soon as the limit is satisfied. The parent query can then aggregate or order just the data from the sub-SELECT.

Query plans involving sub-GROUPs (including complex OPTIONALs, MINUS, and SERVICE), negation in filters (EXISTS, NOT EXISTS), or sub-SELECTs are all handled in a similar fashion. In each case, an operator that builds a hash index accumulates the intermediate solutions. Once all intermediate solutions have been accumulated, the bindings for the in-scope variables are vectored into the sub-plan. The output solutions from the sub-plan are then joined back against the hash index and vectored into the remainder of the parent query plan. UNION is handled with a TEE operator. The solutions for each side of the union are vectored into segments of the query plan that execute concurrently.

Analytic Query Mode

Incremental compilation and sophisticated runtime hot spot analysis of Java applications often yields code as fast a hand-coded C. However, the managed object heap is a known weak point in the JVM. As the object creation rates and object retention period increase, the duty cycle time of the garbage collector increases. Eventually, the garbage collection begins to lock out the application for significant periods of time.

To address this problem, bigdata provides two implementations for each operation based on a hash index. One version of the operator uses the JVM collection classes. These classes provide excellent performance for modest collection sizes, and in some cases offer very high concurrency. The other version of the operator is based on the HTree index structure and the MemStore (which is backed by the native heap of the C process). These operators scale to very large data sets without any overhead from the garbage collector. For low-latency, select queries the performance of the native memory operators is close to the

27 This issue is well recognized in Java cache fabrics and has led to a variety of technologies using the native C heap rather than the managed object heap.
performance of the JVM versions of the same operator. However, when the queries must materialize large 100s of millions of solutions, the JVM collection classes incur very high GC costs but the native memory operators scale gracefully. When the analytic query mode is specified, the query plan will use the native memory operators. The analytic query mode may be enabled by a checkbox on the HTML FORM, a URL query parameter (?analytic), or a query hint (hint:analytic) may be used to enable the analytic query mode.

Inference and truth maintenance

RDF model theory defines various entailments. The entailments are triples not explicitly given in the input, but the database must behave as if those triples were present. There are broadly speaking two ways of handling such entailments. First, they can be computed up-front when the data are loaded and stored in the database alongside the explicitly given triples. This approach is known as eager closure because you compute the closure of the model theory over the explicit triples and materialize those inferred triples in the database. The primary advantage of eager closure is that it materializes all data, both explicit and inferred, in the database. This greatly simplifies query planning and provides equally fast access paths for entailed and explicit statements. Eager closure can be extremely efficient, but there can still be significant latency, especially for very large data sets, as the time to compute the closure is often on the order of the time to load the raw data. The other drawback is space as the inferred triples are stored in the indices, thereby inflating the on disk size of the data set.

The second approach is to materialize the inferences at query time. This has the advantage that the data set may be queried as soon as the raw data have been loaded and the storage requirements are those for just the raw data. There are a variety of techniques for doing this, including backward reasoning, which is often used in Prolog systems, and magic sets, which is often used in datalog systems. With SPARQL 1.1, property paths can also be used to embed select inferences into queries.

An RDF database that utilizes an eager closure strategy faces another concern. It must maintain a coherent state for the database, including the inferred triples, as data are added to or removed from the database. This problem is known as truth maintenance. For RDF Schema, truth maintenance is trivial when adding new data. However, it can become quite complex when data are removed, as a search must be conducted to determine whether or not inferences already in the database are still entailed without the retracted assertions.

28 When executing the BSBM benchmark with the 100M triple data sets, the performance using the native memory operators is within 10% of the performance of the JVM based operators. The performance difference is mostly due to the overhead of serialization of the solution sets onto the native memory pages. However, the JVM DISTINCT operator allows more concurrency and can outperform the native memory DISTINCT operator that has to single-thread the updates on the underlying HTree index.

29 The query hint must be used if you are not using the NanoSparqlServer as the SPARQL end point.

Once again, there are several ways to handle this problem. One extreme is to throw away the inferences, deleting them from the database, and then re-compute the full forward closure of the remaining statements. This has all the drawbacks associated with eager closure and even a trivial retraction can cause the entire closure to be re-computed. Second, truth maintenance can be achieved by storing proof chains in an index33. When a statement is retracted, the entailments of that statement are computed and, for each such entailment, the proof chains are consulted to determine whether or not the statement is still proven without the retracted assertion. However, storing the proof chains can be cumbersome. Third, magic sets once again offer an efficient alternative for a system using eager closure to pre-materialize inferences. Rather than storing the proof chains, we can simply compute the set of entailments for the statements to be retracted and then submit queries against the database in which we inquire whether or not those statements are still proven.

Bigdata supports a hybrid approach in which the eager closure is taken for some RDF Schema entailments while other entailments are only materialized at query time. This approach is not uncommon among RDF databases. In addition, the scale-up architecture also supports truth maintenance based on storing proof chains. Truth maintenance is not available in scale-out because all updates would have to be serialized (executed in a single thread) in order for truth maintenance to have well defined semantics.

Reification done right

If you have a background with publishing, then you probably think of RDF as a metadata standard. RDF statements provide metadata about resources. However, for interesting historical reasons34, RDF lacks a good solution for metadata about metadata – what is sometimes called statements about statements. There are two mechanisms that may be used to capture provenance: RDF reification and named graphs. Both are sources of confusion. RDF reification creates a model of a statement35, but does not assert the existence of the statement that it models. Even for the RDF/Sparql community, reading, writing, and thinking in reified statement models is an awkward and unpleasant business.

For some applications, it is sufficient to know the “source” of the document containing the assertions. In this case, named graphs are a good fit – the source is simply the name of the graph. However, for many domains it is critical to know the provenance of each assertion, including who, when, where, etc. This amounts to statement level provenance. Some security models also require the ability to specify the permissions for each datum independently. Often these requirements are found in the same systems.

RDF can also been seen as a graph standard. The URIs are vertices, the statements are edges or attributes. However, for many graph mining applications, graphs are collections

34 RDF was shaped by the constraints of first order predicate logic. Allowing statements about statements into RDF model theory shifts that logic from first order predicate calculus, which does not permit statements about statements, into second order predicate calculus. The original concept of the Semantic Web steered clear of second order predicate calculus in order to avoid some pitfalls associated with previous knowledge representation frameworks.

35 RDF Semantics, \texttt{http://www.w3.org/TR/rdf-mt/}
of weighted edges. To this community, statement models look like an extremely complex and ill-suited approach to representing what is, essentially, a sparse matrix. The broader graph database community uses a property graph model\(^\text{36}\) where both vertices and edges may have attributes\(^\text{37}\). The RDF syntax obviously handles vertex attributes, but it leaves people scratching their heads when they try to understand how to capture link attributes. RDF needs to be able to support all of these use cases in an efficient and easy to understand manner.

Over the years, we have implemented a number of different mechanisms in the bigdata platform, including statement identifiers that were assigned by the lexicon and representing statements about statements through inlining. We are now moving towards a grand synthesis of these concepts – something that we call reification done right\(^\text{38}\). The key insights are (1) RDF reification does not dictate the physical schema; (2) RDF reification can be explicitly reconciled with statements about statements in the model theory\(^\text{39}\). This means that we can automatically index reified statement models using a physical schema that is significantly more efficient in both space and query performance. It also means, that we known exactly how to translate between a sparse matrix model or a property graph model and RDF; and (3) we need a better syntax – especially for query. Bigdata has a dedicated triples + provenance database mode. This is based on the notion of statement identifiers\(^\text{40}\). Internally, statement identifiers are represented as variable length IVs whose encoding is precisely the encoding of the nested statement – plus a flags byte marking this as a statement identifier. The advantage of this approach is that we do not need to store statement in the lexicon and we can immediately decompose a statement about statements into its component parts.

There are three drawbacks to the current implementation. First, it hijacks the semantics of the GRAPH keyword in SPARQL to bind the statement as a variable and is therefore not compatible with indexing quads. Second, it relies on an extension to the RDF/XML syntax to interchange statements about statements. Third, the inlining technique relies on a prefix marker. Therefore, statements about a statement are not co-located with the ground statement in the indices. We plan to fix these issues in a future release, thus allowing efficient indexing and querying of statements about statements to be used transparently in either the triples or quads mode of the database.

The following examples illustrate the how this will work. The double chevrons indicate where one statement is nested within another. Unlike RDF reification, this syntax also implies the existence of the statement within the double chevrons\(^\text{41}\). In the indices,

\(^{36}\) https://github.com/tinkerpop/blueprints/wiki/Property-Graph-Model

\(^{37}\) Edges are often restricted to simple attributes. However, the topic maps data model and hypergraphs both allow edges to double as vertices.

\(^{38}\) The key insights here are due to a working group formed at the 2012 Dagstuhl Semantic Data Management workshop, with special thanks to Olaf Hartig, Tran Thanh, Orri Erring, and Yrjana Rankka.

\(^{39}\) Many thanks to Olaf Hartig for this work on this.

\(^{40}\) Statement identifiers reflect a concern best articulated in Topic Maps as the ability to make assertions about anything, even other assertions. Topic Maps are not less concerned with model theory and entailments and focus more on an architecture for making assertions about subjects, including that two resources may identify the same subject.

\(^{41}\) We have spoken with a number of RDF vendors and RDF customers. They are universally in favor of this simplification. You can always use the RDF Reification syntax if you do not want this implication.
bigdata represents the statement about a statement as the composition of the IVs of its components, including the nested statement\(^2\).

\[
<<:SAP :bought :sybase>> \text{ dc:source reuters:us-sybase .}
\]

This same syntax is supported for query:

\[
\text{SELECT ?src ?who { }
 <<?who :bought :sybase>> \text{ dc:source ?src }
}\]

When used in this manner, there is an implicit variable binding for the embedded statement. Note that this query may be answered efficiently. For example, one query plan is:

- 2-bound POS index scan (?who :bought sybase) => ?sid
- JOIN (?sid dc:source ?src)

The following is an alternative syntax makes that variable binding explicit and allows for its reuse:

\[
\text{SELECT ?src ?who ?created { }
 <<?who :bought :sybase>> \text{ as ?sid . }
 ?sid dc:source ?src
 \text{ OPTIONAL {?sid dc:created ?created}}
}\]

The binding between the triple pattern and the ?sid variable can work in either direction. Given a binding for ?sid, it can decompose it into the (s,p,o) components of the bound statement. Given a statement expressed as (s,p,o) components, it can compose the inline representation of that statement and bind it on the variable ?sid. This allows easy bi-directional composition and decomposition of statements in a manner that is compatible with quads.

Related Work

In this section we present a brief review of some related work, focusing on clustered graph database architectures and scale-out architectures on which people have imposed SPARQL query mechanisms.

Clustered Graph Databases

YARS2 (DERI)

YARS2\(^3\) is the first clustered graph database. YARS2 used the same pattern of covering indices that was pioneered by YARS\(^4\) and which is used by bigdata among others.

\(^2\) The indexing of the statements about statements is a *database schema choice*. It should be completely transparent to database users. In fact, a database can transparently translate both reified statements and reified statement patterns into an internal format that is more efficient for indexing and query without offering the more pleasant syntax. The syntax is a sugar coating that makes it much more pleasant to deal with RDF Reification by eliminating some very ugly syntax structures.

\(^3\) Andreas Harth, Jürgen Umbrich, Aidan Hogan, Stefan Decker: YARS2: A Federated Repository for Querying Graph Structured Data from the Web. ISWC/ASWC 2007: 211-224
YARS2 supports quads – the forth position of the quad has come to be known as the named graph and was to indicate the source from which the triples were extracted. Covering indices with quads requires six indices: SPOC, POCS, OCSP, CPSO, CSPO, and OSPC where C is the “Context” – also known as the named graph – and is the fourth position of the quad. A batch index build procedure was developed based on merge sort of the indexed quads. The quads were first sorted into the SPOC index order. Once the initial index order was complete, the quads were re-sorted into each of other indexes. As a final step, an inverted Lucene index was built to support full text queries.

YARS2 uses sparse indices. The nodes of the index are retained in RAM and one IO is performed per index block read. (A similar effect is achieved for B+Tree indices by the bigdata platform and by Google’s bigtable architecture.) The indices contain the lexical form of the quads, with the common prefix for an index block represented once at the start of that block. Index blocks are compressed using Huffman encoding.

The indices are divided into partitions using the hash code of the first index element is used. E.g., the hash code of S for the SPOC index. Common predicates such as rdf:type can have very high cardinality in web crawls. To avoid exceeding the capabilities of a single machine, and to evenly distribute the data, YARS2 used randomized placement for indices starting with P, e.g., POCS. Other systems using hash partitioning have either hash all triples based solely on the subject (4store) or used the first two key-components for index orders beginning with P. For YARS2, if the index begins with P, then the query is flooded to all nodes since the tuples for the P index are randomly distributed.

YARS2 supports parallel evaluation of concurrent queries. Iterators reading on remote access paths returned sets at a time and supported blocking evaluation in order to avoid overwhelming main memory with intermediate result sets. Indexed nested loop joins were implemented. The joins execute on the query node, with access paths that read on the storage nodes.

4store (Garlik/Experian)

4store was developed by Garlik (now part of Experian) to support the company in the development of its possible markets, primarily related to the identification of breaches of personal information. The architecture is based on a hash partitioning of triples into segments and the redundant location of segments on a cluster of commodity hardware nodes. The architecture supports replication, where r is the number of replicas. Hence, r=2 means that there are three copies of a given segment. Writes will fail unless all replicas are online (the cluster must be 100% up for writes to succeed). Reads will succeed (for a given access path) if there is at least one segment that can answer the request. 4store is designed for relatively small clusters (9 nodes are discussed in the paper) and uses hash codes that offer an expected collision free performance for up to 39B triples. Unspecified mechanisms are used once hash collisions are detected.

In 4store, the data segments are maintained by Storage nodes. Each segment has per-predicate \{P\}S index and a per-predicate \{P\}O index. These indices are tries. In

addition, there is an index by "model", which is similar to the concept of a named-graph. The model graph index allows efficient enumeration of all triples in a model and supports efficient delete of the triples for a model. Data partitioning is based on Resource IDentifiers (RIDs). In 4store, a 64-bit RID includes bit flags to mark URIs, Literals, and Blank nodes. The remaining bits are the hash code of the lexical value (for URIs and Literals). For blank nodes, the remaining bits are assigned in a pattern designed to randomize the placement of the blank nodes across the segments. Triples are assigned to segments based solely on the RID of the Subject of the triple. Thus, all triples with a common subject are always present in the same Segment.

Query evaluation is coordinated by a single Processing node. Joins are executed on the Processing node against access paths that read on the Storage nodes (there is an optimization for star-join patterns with a common subject). Join ordering is done based on an analysis of the triple patterns and a statistical summary of the frequency of different predicate types. Load balancing for query is performed by distributing reads to the Storage nodes having a replica of a segment on which an access path must read with the least workload. Access paths for a query may be run in parallel to reduce the total latency of a query, but 4store prefers to run the access paths sequentially. 4store evaluates subject-centric star-joins at the segment for that subject. DISTINCT and REDUCED are pushed down to individual joins to reduce the cardinality of the intermediate solution sets.

4store has been released as open source under a GPL license. Garlik/Experian have internally replaced the use of 4store by the new (and unpublished) 5-store platform.

Virtuoso (OpenLink)

Virtuoso was originally developed as an RDBMS platform. It has subsequently been extended to support the XML and RDF data models and query languages. Most recently, the platform has been extended into a hybrid of a row-oriented RDBMS and a column store. Unlike many RDF databases, Virtuoso does not carry covering indices. Instead, it models graphs using a relational table with S, P, O, and C column and carries multiple indices over that table, providing a variety of access paths. Additional indices may be declared and the query optimizer will use them if they are declared. Virtuoso makes extensive use of bitmap indices and (most recently) column projections to minimize the on disk footprint associated with RDF data. Virtuoso is also one of the few RDF databases that support query-time inference as opposed to eager materialization of entailments. The most recent release also supports runtime query optimization based on sampling and cutoff joins.
Virtuoso is available as open source (GPL) for single machine deployments. The clustered database product is available under commercial licenses and supports two basic partitioning strategies (replication versus static key range partitioning) and failover (which is distinct from replication and relies on redundant services). Only read-committed queries can scale horizontally to replicated nodes. Serializable reads always read against the leader. Thus, the read isolation level is reduced in practice from serializable to read-committed when scaling out the database. The high availability mechanism uses a 2-phase commit and requires all nodes to be available. If a single node is down, then the remaining nodes are still available for read but writes will not be accepted. System administrators are required to manage resources and trade off availability and throughput for bulk loads.

Key-Value store and Map/Reduce systems

There have been several attempts to develop graph databases based on key-value stores such as HBase or Cassandra (e.g., CumulusRDF), on Lucene clusters, and on map/reduce platforms such as Hadoop. Key-value stores provide very little infrastructure for efficient query processing, and it is difficult to create efficient graph databases as applications of these platforms. Several interesting research platforms have been created over Hadoop. Many of these platforms have focused on scalable computation of the RDFS closure for very large graphs (100s of billions of edges). In addition, a few platforms have been developed for answering structured queries against graph data. These systems emphasize scalability and batch processing, but incur very high latency when answering queries due in part to the high startup costs of map/reduce jobs.

CumulusRDF (Harth, Ladwig)

CumulusRDF\(^{51}\) explores various ways in which a scalable key-value store might be applied to create a scalable graph database capable (in theory) of answering structured graph queries. The authors review several key-value stores and then focus on Apache Cassandra. They compare two different schemes for representing 6 covering indices (ala YARS2) within Cassandra. Specifically, they compare a hierarchical schema that relies on nested supercolumns (a Cassandra specific feature) and a flat representation. Due to data skew with predicate types, special approaches are required for indices whose first key component is P. For example, the hierarchical scheme uses a PO key and leaves the value empty while the flat representation uses a PO column name (and leaves the column value empty) because more than one attribute value may occur for a given property and subject. Using a variety of such tricks, the authors are able to create the necessary 6 covering indices. The experiments were limited to a performance evaluation comparing the hierarchical and flat schemas on single access path requests. The flat schema was found to dominate. A limited secondary experiment also characterized the throughput in terms of linked data “gets” based on a simple DESCRIBE execution (all properties for a subject and up to 10k triples whose target is the subject vertex). The paper does not suggest a technique for handling blank nodes, nor a means to execute DESCRIBE requests that subsume blank nodes into the description using the Concise Bounded

\(^{51}\) Ladwig, Günter, and Andreas Harth. "CumulusRDF: Linked data management on nested key-value stores."
Description or similar iterative techniques. The results are not directly comparable to other platforms. Analysis of the system performance is difficult because the authors are unable to take a top-to-bottom view of the software stack. For example, they attribute some performance differences to design mismatches in Cassandra (many of which are in fact design features for row stores), such as the atomicity of retrieval of a logical row and the corresponding limits on the size of a logical row.

SHARD

SHARD is an architecture for SPARQL query answering against flat files stored in HDFS using Hadoop map/reduce jobs to execute joins. The SHARD system was critiqued by Huang, primarily for failing to exploit an efficient RDF storage layer on the nodes and secondarily for failing to take the graph structure into account when devising the data-partitioning scheme and query decomposition. Only small data sets were considered (100s of millions of edges).

Graph partitioning

Huang, Abadi, and Ren present an architecture for SPARQL query answering that uses an efficient RDF aware per-node storage layer (RDF3X) and a graph aware partitioning strategy. They present results comparing SHARD (Kurt, 2010), RDF3X on a single machine, hash partitioning by subject (similar to 4store), and both 1-hop and 2-hop undirected graph partitioning. The direct comparison of hash partitioning by subject with graph partition strategies greatly facilitates the interpretation of these results. Edge cuts for high cardinality vertices were explicitly considered, as was the relationship to main memory graph processing systems (e.g., Pregel) and Bulk Synchronous Parallel (BSP).

Only small data sets were considered (250M triples on a 20 node cluster) and then only for a single benchmark (LUBM). Only a limited number of the LUBM queries are not Parallelizable without Communication (POWC). Therefore, the experiments provided interesting results only for the hash partitioning and graph partitioning cases and even then, only for LUBM Queries 2 and 9. The architecture optimizes the decomposition of SPARQL queries into POWC queries with the minimum number of non-POWC joins – thus minimizing the number of map/reduce jobs that must be executed. In many ways, the design deliberately compensates for the poor match of map/reduce processing to online structured query answering.

Huang, *et al* demonstrate that partially redundant graph partitioning can provide a significant speed up over hash partitioning. They show that providing 1-hop and 2-hop guarantees can turn many queries into PWOC queries. However, the general applicability of their work is limited by their reliance on the Hadoop map/reduce platform to handle queries that are not POWC. Each map reduce job introduces significant latency into the query – latency that custom-built graph query systems such as 4store, virtuoso, and bigdata do not suffer. With low-latency internode messaging, such as demonstrated by Weaver and Williams, better performance may be yielded using different partitioning and parallelization strategies. Interestingly, Huang considers Weaver and Williams work on computing RDFS closure, but not their work on general SPARQL query answering. Finally, the graph partitioning and 1-hop and 2-hop guarantees introduce significant latency into the data load procedure.

A few other systems have examined the effects of graph partitioning. Sedge provides dynamic partitioning based on workload, including the introduction of redundant partitions in order to minimize internode communications. Significant speedups are reported over Pregel, a system that Huang also considers.

Accumulo

Apache Accumulo (http://accumulo.apache.org/) was developed in order to expose an architecture having a security model appropriate for DoD applications. Unlike most key-value stores (but in common with bigdata and cassandra), Accumulo maintains the data in key order. Accumulo also supports secondary indices, through experience has shown that the Accumulo indices (private communication) may get out of sync and require occasional rebuild to re-establish coherency.

Accumulo uses key-value pairs to model logical rows. The key of a Accumulo tuple consists of a Row ID, which is the primary key, a Qualifier, which is the name of the field, a Visibility field, which provides security, and Timestamp, which allows multiple values at different points in time. The Value associated with the key is the actual value associated with the rest of the tuple.

<table>
<thead>
<tr>
<th>Key</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row ID</td>
<td>Column Family</td>
</tr>
</tbody>
</table>

Figure 11 : Accumulo tuple structure (from the Apache Accumulo site)

The concept of a “Column Family” as originally described for Google’s bigtable is achieved through the concept of “Locality Groups” in Accumulo. These may be changed through an administrative interface. Changes in locality groups are propagated as a side effect on ongoing compacting merge operations.

Accumulo may be used to represent the edges of a graph directly with both link weights and edge level security. However, in order to provide efficient query answering it is necessary to have multiple orderings over the edges of the graph. This can be achieved through secondary indices. The primary index provides what amounts to an SPO index order with optional link attributes. The secondary indices would provide POS and OSP index orders.

A graph modeled in Accumulo typically uses the external representation of the vertex identifier (Row ID and Qualifier) and the link or property type (Family). This approach is similar to YARS2. The advantage of this approach is the property set for vertex (all tuples having the same Row ID) may be recovered using a single key-range iterator without having to decode internal identifiers by materializing them against a dictionary index (also like YARS2). The disadvantages of this approach are (a) an increased footprint on the disk (which can be offset by block compression); (b) the larger index stride would negatively impact performance on joins (again, partly offset through compression); and (c) the in-memory representation of intermediate solutions will be both fatter and slower as joins must be computed against the external representations rather than internal identifiers, which are often simple integers.

RYA

RYA\(^{60}\) is a research prototype for ad hoc graph query over Accumulo. It uses multiple index orders (SPO, OSP, and POS) and supports a variety of joins designed to accelerate query answering. The approach is very much like the one outlined above. Data load is achieved using a map/reduce job (this is the Accumulo bulk load strategy). The batch load time on a 10 node Accumulo cluster is reported as 700 minutes for the LUBM U8000 data set (1 billion edges). Bigdata loads the same data set in one hour on a comparable cluster – nearly 12 times faster.

Query evaluation is based on the openrdf platform. Rya uses a map/reduce job to compute statistics that are used to reorder joins. Rya also includes an optimization for parallel evaluation of the nested index subquery joins (shipping an Accumulo iterator with a filter that verifies whether solutions exist for a triple pattern with bound values from the previous join(s)). Finally, an optimization is explored where the Accumulo batch scanner is used to coalesce reads against the same tablets into a common request, which could dramatically reduce the #of actual requests issues (bigdata optimizes this by flowing the intermediate solutions to the tablets and performing the joins at the tablets). Unfortunately, the query results reported by Rya are fatally flawed. The benchmark used (LUBM) does not parameterize the queries in the data. Thus, each presentation of a query presents exactly the same query. Further, the high latency LUBM queries (2, 6, 9, and 14) were modified to request only the first 100 results. This makes it impossible to compare the performance results reported for Rya with the published results for any other platform. Rya reports low latency for those queries, but this latency is completely artificial as Rya is not executing the full query.

Rya has not examine whether it is possible to parallelize joins (distributed hash joins) or whether it is possible to map the vector the intermediate solutions across the Accumulo tablet servers. High performance for ad hoc query on Accumulo likely depends on the exploration of such performance enhancements.

Analysis

There have not been any good studies of performance across the range of graph databases described here. While a variety of index strategies have been used, most of databases index edges, though Virtuoso has several interesting variations using bitmap indices and column projections. The use of dictionaries to encode lexical values is common, but not universal. As a counter example, YARS2 directly stores the entire lexical representation of the triple in the index. The upside of this approach is that there are no materialization costs for the dictionary and FILTERs may be evaluated within index operations. The downside is that the stride of the index is significantly increased by the average width of the lexical representation of a triple. RDF3X is another platform that encodes everything in a dictionary and several key query optimizations used by the RDF3X platform, including how it achieves sideways information passing, rely explicitly on a dictionary encoding of all lexical values as fixed width integers. One downside to this approach is that numeric values are encoded in the dictionary. This makes it impossible to interpret a FILTER against a numeric without a random IO against the dictionary. Bigdata and Virtuoso support inlining of data typed literals. By inlining data typed literals, these systems are able to dramatically reduce the size of the dictionary. Values that are typed as xsd:int, xsd:long, xsd:double, xsd:float, xsd:dateTime, etc. appear directly in the statement indices and do not require decoding against a dictionary. Since the value appears in the statement index, key-range scans of the statement indices are possible for strongly typed data and typed triple patterns.

4store defers FILTER evaluation as long as possible in order to avoid the costs associated with the materialization of lexical forms from the dictionary index. Bigdata applies FILTERs as early as possible in order to reduce the number of intermediate solutions into the subsequent access paths and do less work in the following joins. The different approach to FILTER evaluation is mainly due to the query evaluation model. In 4store, the access paths are remote reads and the joins are evaluated on the Processing node. In bigdata, intermediate solutions are routed to the data nodes having the appropriate index partitions and nested index joined are performed at those nodes. Thus, bigdata can benefit from applying filters as early as possible. Another interesting issue is how distributed graph databases load balance the data. 4store uses hash codes for the internal identifiers to achieve load balancing. Bigdata and Virtuoso apply a bit rotation to the internal identifiers in order to have the most quickly varying bits appear as the most significant bits in the identifier.

Conclusion

SPARQL addresses what is in many ways the “easy” problem for graphs – crisp pattern matching against attributed graphs. OPTIONAL adds some flexibility to these graph pattern matches, but does not change the fundamental problem addressed by SPARQL.
We have been tracking with interest current research on heuristic query optimization, techniques to counteract latency in distributed query (symmetric hash joins and eddies) and query against open web, including frameworks with the potential to support critical thinking about data on the open web, including reasoning about evidence supporting conflicting conclusions, unreliable conclusions, and conclusions relying on incomplete evidence. Another line of research on schema agnostic query explores how people can ask questions about data, especially large and potentially unbounded collections of linked data, when they have little or no a priori understanding of what may be found the data. Similar concerns are also studied as graph search. Graph mining is concerned with discovering, identifying, aggregating, and summarizing interesting patterns in graphs. As in schema agnostic query, people trying to find interesting patterns in the data often do not know in advance which patterns will be “interesting.” Graph mining algorithms can often be expressed as functional vertex programs using multiple full traversals over the graph, and decomposed over

66 Günter Ladwig, Thanh Tran, Linked data query processing strategies, Proceedings of the 9th international semantic web conference on The semantic web, November 07-11, 2010, Shanghai, China.
parallel hardware. SYSTAP, LLC is currently leading a team of researchers to develop a capability for graph search and graph mining on GPGPUs. GPGPUs are massively parallel hardware originally developed to accelerate video processing for games, and now used in cell phones and the world’s largest super computer. This will be an open source project under a liberal license. We plan to integrate this work into the bigdata platform, providing a seamless capability for linked data, structured graph query, graph search, and graph mining. We also see this as an opportunity to apply GPUs to computational models of cognition in support of large-scale open collaboration frameworks and mapping the human connectome.

76 Kyrola, Aapo, Guy Blelloch, and Carlos Guestrin. "GraphChi: Large-scale graph computation on just a PC." OSDI, 2012.
77 The Titan Supercomputer installation at the Oak Ridge National Laboratory achieves 20 Petaflops using 299,009 Opteron cores and 18,688 GPUs. 16 Opteron cores per node. 1 GPU per node. Each GPU has 2,496 CUDA cores delivering 3.52 Teraflops per GPU.